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Abstract Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diag-
nostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models
that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in
particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and
comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the transla-
tional ‘valley of death’, which largely reflects the fact that studies in rodents are difficult to translate to humans.
This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease pro-
cesses. However, it would be a mistake to think that animal models do not represent a vital step in the translational
pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ
and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and
effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this
position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research
ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large
datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with
a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate
bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.

Keywords iPSC e Tissue engineering ® Multiomics ® Network medicine e Bioinformatics e Big data e
Comorbidities e Cardiovascular disease

cardiovascular pathology and strategies to make optimal use of obtained

1. Introduction

data. In past years, many new potential drug targets turned out to be in-

The chronic and progressive nature of cardiovascular disease represents
an enormous economical and societal challenge.” Economic consequen-
ces are largely due to high healthcare expenses and loss of healthy years
and ability to work of affected individuals. Moreover, the burden of car-
diovascular disease is high not only for affected individuals but also for
their relatives. This justifies research models that resemble human

effective in the treatment of ischaemic heart disease and heart failure
(HF). This is principally due to a lack of reproducibility and limited trans-
lation from rodent models to large animal models and subsequently to
humans. Reproducibility and validation of key research findings in experi-
mental models that represent human cardiovascular disease characteris-
tics is essential for the implementation of new diagnostics and therapies
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Table | Definitions of the 3Rs?

Standard
Replacement Methods which avoid or replace the use of animals
Reduction Methods which minimize the number of animals

used per experiment
Refinement Methods which minimize animal suffering and im-

prove welfare

Scientific approach

Accelerating the development and use of models and tools, based on the latest sci-
ence and technologies, to address important scientific questions without the use of
animals

Appropriately designed and analysed animal experiments that are robust and repro-
ducible, and truly add to the knowledge base

Advancing animal welfare by exploiting the latest in vivo technologies and by improv-

ing understanding of the impact of welfare on scientific outcomes

in a routine clinical setting. The design of models for studies on cardiac
pathophysiology is challenging, as cardiovascular disease is complex and
involves multiple causes and comorbidities, resulting in a multiple-organ
disease in an ageing population. In this position paper, we focus on re-
placement, reduction, and refinement of animal experiments, also known as
the 3Rs. This concept had already been introduced in 1959 by Russel
and Burch? (Table 1). The objective of this consensus document is to
provide an overview of current state-of-the-art in animal models, studies
in human and stem cell-derived models (Figure 1A), and highlight how
tools have been developed to advance our knowledge of cardiac muscle,
vascular and valve diseases (VDs) based on the 3R principles (Figure 1B).

2. Cardiovascular diseases and
current experimental models

2.1 Epidemiology of acquired and inherited
forms of cardiovascular disease

HF has a high prevalence, is often lethal and patient care is expensive.
This condition is now estimated to affect ~38 million people worldwide
and represents the main cause of death and disability.> Despite the re-
markable progress in clinical management of patients and the use of devi-
ces assisting the failing myocardium,* the prognosis of HF remains poor,
with mortality rates ranging from 6% to 7% at 1 year in patients with sta-
ble HF to >25% in patients hospitalized with acute HF,5 and with an
overall mortality rate estimated at 40% at 4 years from diagnosis.® HF is
also tremendously expensive, accounting for 2—3% of national health
expenditures in high-income countries,” and is projected to more than
double in the next 20years as a result of the ageing population.? The
most common progressive cardiac rhythm disorder, atrial fibrillation
(AF), is associated with HF, stroke and increased mortality. AF affects
2-3% of the Western population, and this percentage will increase in the
ageing population.” Inherited cardiomyopathies caused by pathogenic
variants in genes encoding regulatory and structural cardiomyocyte
(CM) proteins, and channelopathies, caused primarily by pathogenic var-
jants in genes encoding ion channels are a major cause of sudden cardiac
death and morbidity in the young."®"" In addition to acquired and inher-
ited forms of heart disease and rhythm disorders, pathologies such as
aortic aneurysms and valvular disease affect many individuals. Abdominal
aortic aneurysms (AAAs) occur in 4-7% of men and up to 2% of women
over the age of 55 and are the 10th leading cause of death worldwide."
Heart VD is highly prevalent, with a mortality risk ratio of 1.36 in devel-
oped countries. VD is a progressive disease that increases with the age-
ing of the population and up to 30% of patients undergo surgical or

percutaneous interventions. Valvular dysfunction can be congenital or
acquired, and in each case may lead to either stenosis or regurgitation."
Below we describe the main pathological features of cardiovascular dis-
eases, animal models that mimic disease features observed in humans
and the availability of animal-free models.

2.2 Heart failure with reduced ejection
fraction

HF is a haemodynamic concept, and failure of the pump to deliver blood
(i.e. systolic failure) is often quantified as a reduced left ventricular ejec-
tion fraction (LVEF). HF with an LVEF <40% is termed heart failure with
reduced ejection fraction (HFrEF). Failure of the heart to properly relax
and fill (i.e. diastolic failure) may produce similar symptoms as HFrEF, al-
though with a preserved ejection fraction of >50% (HFpEF; Section 2.3).
HF with an LVEF between 40% and 50% is termed HF with mildly re-
duced EF. At least half of all HF patients present with reduced systolic
function.™ Loss of contractile capacity of the heart in HFrEF is due to
loss of myocytes and to adverse remodelling of the surviving myocytes,
reducing their contractile function (Table 2). The most common cause is
myocardial infarction (MI), and subsequent post-MI remodelling, due to
coronary artery disease and all its underlying causes (hypertension,
hypercholesterolaemia, diabetes, and obesity)."® Other common causes
of HFrEF are exposure to cardiotoxic agents, including cancer chemo-
therapy,'® viral myocarditis,"’ peripartum cardiomyopathy (PPCM)
(Section 6.1),"® and genetic defects (Section 2.5)."”

Current standard of care includes first-generation drugs: angiotensin-
converting enzyme inhibitors, angiotensin receptor blockers (ARBs),
B-blockers, mineralocorticoid receptor antagonists, ivabradine and,
more recently, combined ARB-neprilysin inhibitors (ARNIs-sacubitril/
vallsar'tan).20 These drugs were developed decades ago to target both
myocardium and vasculature to improve haemodynamics, and they may
also mitigate the adverse remodelling of CMs. Hope has been raised by
the unexpected discovery of the remarkable effect on HF of gliflozins
(i.e. inhibitors of the sodium—glucose cotransporter 2). However, this ef-
fect is still awaiting a molecular explanation.”’ Recently, an oral soluble
guanylate cyclase stimulator, vericiguat, has been shown to reduce car-
diovascular deaths or hospitalization in patients with high-risk HF.>* The
fact that not a single biological drug (protein, peptide, antibody, and nu-
cleic acid) exists for a condition that is as prevalent as HF?? is explained
by the complex multifactorial nature of this disease.

The stalling of molecular therapeutic innovation®* is in stark contrast
to the significant progress in the understanding of HFrEF pathophysiol-
ogy. Cardiac injury and coincident reduced strain results in increased
myocardial stress and determines a common endpoint, largely indepen-
dent from the original cause of damage and diverse response and
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Figure 1 (A) Models that are available for studies on cardiovascular disease, ranging from human and laboratory animals to stem cell-derived models.
Aspects that can be measured currently in the different models are indicated with the white check mark. This overview shows that several models allow to
reduce the number of studies in laboratory animals, as many initial steps in identification of pathomechansisms, testing drug toxicity and drug effectiveness
can be studied in cell-based models. Clearly, studies in human itself offers multiple opportunities to reduce the work in laboratory animals. (B) Multiple tools
have been developed in past years to refine and replace studies in the models used for cardiovascular research, and range from tools and expertise to char-
acterize human tissue samples obtained during surgery to models derived from hiPSCs (human induced pluripotent stem cells). (C) Example of an experi-
mental design making use of available complementary research models based on the 3R principles.®

pathways triggered by the initial cardiac injury. This includes CM remod-
elling and alteration of metabolism, followed by progressive LV dilatation
(eccentric remodelling), associated with extensive remodelling of the

extracellular matrix (ECM), fibrosis and significant changes in viscoelastic
properties.” This, in turn, reduces contraction efficiency and increases
oxygen consumption, leading to the activation of the sympathetic
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Table 2 Comorbidities, causes and cellular, structural and functional remodelling of the heart in HFrEF and HFpEF patients

Co-morbidities and
causes

Vascular changes

Cellular changes in the
heart

Structural
remodelling

Cardiac dysfunction

HFrEF

Hypertension

Hypercholesteraemia

Diabetes

Obesity

Cardiotoxic agents

Viral myocarditis

Peripartum cardiomyopathy

Genetic defects

HFpEF

Multiple comorbidities: hy-
pertension, obesity, diabe-
tes mellitus, coronary

Coronary
artery
disease

and ischaemia

Proposed: Systemic inflam-
mation-mediated endo-
thelial dysfunction

Cell death

Reduced cardiomyocyte
contractility

Altered metabolism

Altered extracellular matrix

Fibrosis

Altered beta-adrenergic re-
ceptor pathway

Stiff cardiomyocytes, i.e. high
titin-based passive force
Altered extracellular matrix

Eccentric remodelling
(dilated, thin-walled

ventricle)

Concentric remodelling
(thick-walled ventricle)
Atrial dilation

Reduced end-systolic pres-
sure-volume relation

Reduced response to
exercise

Neurohumoral activation

Large patient heterogeneity
Abnormal heart compliance
and relaxation

artery disease, sleep ap- Fibrosis
noea, and lung disease

signalling

Disturbed nitric oxide

Elevated left ventricular filling

pressure

nervous system and the renin—angiotensin—aldosterone system, which
are initially adaptive but eventually worsen the condition.*** The main
features of adverse remodelling in HFrEF patients are summarized in
Table 2. Various aspects of HFrEF pathophysiology can be mimicked in
cellular or tissue models in vitro by applying stress factors (Table 3).
Correlates of molecular causes of HFrEF in CMs include de-regulation of
[-adrenergic receptor signalling, transition from compensatory to patho-
logical hypertrophy, switch to a fetal type of gene expression and metab-
olism, changes in post-translational modification profiles, alterations in
the calcium cycle and dysfunction of the sarcomere. Virtually all these
cellular events can be experimentally mimicked to a significant extent in
cell-based model systems where the molecular events involved can be
dissected. Analogous considerations can be made for the other cell types
that are involved in the myocardial response to injury, namely cardiac
fibroblasts and endothelial cells.

Nevertheless, to address the wide gap in translation, and to reproduce
the complex sequential events that occur in HFrEF, small and large ani-
mal models are complementary and still required.”® Such models are es-
sential for proof of concept of treatment strategies and for evaluation of
systemic effects of cardiac insults and therapies at different stages of the
disease. Table 3 illustrates animal models showing reduced cardiac func-
tion upon acute and chronic cardiac insults, and animal-free models, in-
cluding primary CMes, induced pluripotent stem cell (iPSC)-derived CMs,
engineered heart tissue (EHT), and organoids.>”

2.3 Heart failure with preserved ejection
fraction

HFpEF prevalence is continuously increasing but many large clinical trials
have failed to improve outcomes.*” The lack of improved outcomes is
due to the absence of a specific therapy because of incomplete under-
standing of the pathophysiology of the disease, and the recognition that
the more cardio-centric view of HFrEF does not fit HFpEF. Furthermore,
there is a large heterogeneity in the patient population as HFpEF is a

complex syndrome with varying contribution of the pathophysiological
substrate.**>" HFpEF is more common among the elderly and is associ-
ated with multiple comorbidities, such as hypertension, obesity, diabetes
mellitus, coronary artery disease, sleep apnoea, lung disease, and remark-
able sex-related differences.>? Classic common features include abnor-
mal LV compliance and relaxation, with resultant elevations in LV filling
pressure, abnormal systemic and pulmonary vasorelaxation, and neuro-
humoral activation.*®*"3 Recent principles in HFpEF management rely
on the fact that the underlying mechanisms of this syndrome are not the
same in all affected patients. This highlights the need to identify the spe-
cific causes that can lead to HFpEF and the different HFpEF pheno-
types.>> Recent implementation of phenomapping”® has enabled
identification of phenotypically distinct HFpEF categories to better clas-
sify pathophysiologically similar individuals who may respond in a more
homogeneous and predictable way to interventions, regardless of the as-
sociated comorbidities.

An important limitation in understanding the HFpEF pathomechan-
isms and developing new pharmaceutical substances is the scarcity of
proper animal models for this complex syndrome, leading to failure in
the translation of basic research to the clinical setting. In fact, most animal
models suggested to be ‘HFpEF’ present with elevated diastolic pressure
but rarely demonstrate the development of HF, which is an essential
condition to recapitulate the human situation. Excellent, in-depth
reviews on this subject are available.>>™° A true animal model of HFpEF
should present with all of the following: an ejection fraction in the normal
range for that animal model of at least 50%; diastolic dysfunction; exer-
cise intolerance and pulmonary oedema (Table 2).°® Concentric cardiac
hypertrophy can be observed depending on the studied pathomechan-
ism. The challenge is to reliably and reproducibly trigger these character-
istic changes in small or large animal models. Several diabetes and
obesity rodent models show HFpEF disease features (Table 4).57%¢
Unfortunately, pure gene-knockout animal models, so successful in other
fields when studying a pathomechanism, are unlikely to generate the
complex HFpEF phenotype, although aspects of the disease may appear.
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Modelling cardiovascular disease

Typical examples are the db/db and ob/ob mice, two common models of
type-2 diabetes mellitus that lack the leptin receptor or functional leptin,
respectively and do show HFpEF characteristics. However, potentially
confounding adverse effects arise from altered leptin signalling.>®°° Table
4 provides an overview of the different models which are used to mimic
HFpEF disease characteristics based on the different comorbidities and
various ways to induce cardiac remodelling.“’85 We also indicate how
well the model reflects the HFpEF phenotype observed in patients and
the strengths and limitations of specific models. Questionable HFpEF
models that incompletely mimic the phenotype include the classical
transverse aortic constriction approach, as well as various other inter-
ventions predominantly causing hypertension and cardiac hypertro-
phy.67770'73’78 Altogether, it is unlikely that there will be a single animal
model that can combine all HFpEF sub-phenotypes. This caveat notwith-
standing, a good animal model of a common form of HFpEF has emerged
as one that is both metabolically and mechanically stressed, similar to
what is observed in patients. A recently proposed and interesting con-
cept is that HFpEF presents as a multisystem inflammatory metabolic dis-
ease® driven mainly by excess adiposity linked with imbalance of nitric
oxide (NO) levels.®*¥”8 An additional, commonly observed risk factor
is hypertension, which is also associated with generalized imbalance in
NO metabolism and bioavailability. In light of these findings, HFpEF mod-
els that recapitulate the metabolic inflammatory phenotype are
warranted.

One of these rare HFpEF-mimicking models is the obese Zucker dia-
betic, spontaneously hypertensive Fatty (ZSF1) rat that presents with hy-
pertension, type 2 diabetes, hyperlipidaemia, obesity, and nephropathy.
This hybrid rat is a Charles River Laboratories cross between a Zucker
Diabetic Fatty female rat and a Spontaneously Hypertensive Heart
Failure male rat. Unlike the lean ZSF1 rat that can serve as a convenient
control, the obese ZSF1 rat shows multiple HFpEF characteristics known
in patients and typical cardiac hallmarks of the disease including modest
fibrosis, titin modifications, and CM stiﬁ‘ening.sl87 Furthermore, a large
animal model of metabolic infllmmatory disease has been generated,
which clearly supports the concept of mechanical and metabolic hits as
triggers of the disease. Manifestation of ‘patient-like’ HFpEF was evident
in pigs with hypertension, diabetes, and hypercholesterolaemia.®> A ro-
bust small-animal model of HFpEF was recently made by combining
meta-inflammation induced by adiposity (high-fat diet) and hypertension
induced by disruption of NO signalling (suppression of constitutive NO
synthases) in wild-type mice.®* Importantly, the individual insults alone
did not recapitulate HFpEF pathology. A remarkable finding in this two-
hit insult mouse model is the disruption of the unfolded protein re-
sponse that is also linked to autophagy in various diseases.®” Autophagy
activators such as caloric restriction mimetics are pleiotropic agents that
are beneficial for diastolic heart function in rodent models of ageing and
hypertensive heart disease.?®

The few available patient-mimicking animal models of HFpEF, driven
by metabolic and mechanical stress, represent useful platforms for test-
ing novel treatments in common HFpEF subtypes. The overview pro-
vided in Table 4 highlights the progress that has been made in refinement
of HFpEF animal studies. However, there remains a need to generate ad-
ditional models that also represent other HFpEF phenotypes and allow
for testing of specific treatments. Whether animal-free models of HFpEF
can be successfully developed is questionable due to the complexity of
the HFpEF pathophenotypes. iPSC-CMs may be of potential use as they
can also be cultured as 3D cardiac tissues. These systems have the ad-
vantage of being derived from humans (including patients). This would

be useful given the scarcity of cardiac biopsies from the HFpEF patient
population. Human iPSC-CMs (hiPSC-CMs) could be used to model
specific parameters of cardiac function, such as relaxation, for drug test-
ing, and in co-culture studies to define the effect of endothelial cell dys-
function on CM performance.”® However, with very few exceptions,”’
the application of hiPSC-CMs as well as other cell culture types has not
really been explored in HFpEF research.

2.4 Atrial fibrillation

Atrial fibrillation is more than just an irregular rhythm on an ECG. It is a
condition that requires a multifaceted approach and a variety of re-
search. Known risk factors associated with AF include ageing, common
cardiovascular diseases, cardiomyopathies, and channelopa‘chies.”‘93
Furthermore, genetic studies have demonstrated an appreciable genetic
component in the determination of risk for AF, and genome-wide associ-
ation studies have identified ~100 risk loci.”*?> This combination of
inherited risk factors, acquired risk and DNA damage”® makes research
into AF both especially interesting and challenging. Experimental models
to study AF are shown in Table 5. Various research groups discovered
that AF perpetuates itself, ‘AF begets AF, as a landmark paper put it.”’
The signalling pathways, structural, and functional alterations of this self-
perpetuation have been dissected in large animal models and in patients
with AF.7% The interaction between genomic factors leading to AF and
other stressors is less well understood. Small animal models like murine
models, fish and Drosophila are useful for studying genetic and genomic
modifications, and due to their shorter lifespan provide an opportunity
to include research on ageing (Figure 1A).°%7%%

Animal-free innovations like human cell models, immortalized CM cell
lines, and EHT will be instrumental in exploring these interactions and
the underlying transcriptional and pathophysiological adaptations in de-
tail. "% Different forms of AF (paroxysmal, persistent, and chronic) are
very difficult to mimic in animal or non-animal models. To date, there is
no model for paroxysmal AF. Moreover, as AF is often a result of long-
term exposure to risk factors partly on top of a genetic vulnerability it is
especially difficult to copy a chronic disease like AF in cells. While experi-
ments studying cellular adaptive processes and intracellular signalling re-
quire experiments in cells and cell-colonies allowing for genetic and
pharmacological interventions, there are challenges with the use of such
models for studying human chronic conditions like AF. Human iPSCs
have already been differentiated into atrial CMs,'®" and atrial CMs have
been generated from fetal immortalized CMs.'® An important limitation
is that such cells do not mimic all aspects of the adult CM phenotype,
such as cell—cell coupling between cells (myocyte—myocyte or myocyte—
fibroblast), making studies on the pathophysiology of, for example, con-
duction disturbances challenging. 3D formats facilitate in vitro maturation,
and these 3D cell arrangements including EHT and bioprinting have
overcome many of the previous limitations of cellular-based solutions
and have been specifically adapted for AF research.'®

As in other disease models, validation in more complex systems, occa-
sionally large animals but ideally in patients with AF%8, will be required
for successful translation of new findings into better diagnostics or thera-
pies.9'98’104_106 For this purpose, data collection in human cohorts should
be improved and intensified by for example: analysing algorithms in
smartphones and wearables, machine learning and artificial intelligence
analysis, phenotyping of patients at risk of AF and with AF. This should
be done not only with electrophysiological studies like high-density elec-
trical mapping, but also imaging, biomarkers, proteomics, metabolomics,
genetics, and genomics.
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Table 5 Examples of animal models of atrial fibrillation and animal-free innovations

Species Pathological

features

Applications

Dog, pig, sheep, goat Pacing induced

tachycardiacﬁ'1 04105

Understanding mechanisms of tachycardia-in-

Animal-free alternatives

Paced cell systems, immortalized myocytes

duced ion channel remodelling, therapeutic

interventions to prevent electrical

remodelling

Dog, pig, sheep, goat Electrically induced

AF physiological mechanisms of AF has been ex-

tremely useful in mimicking human AF (‘AF

begets AF’)97

Understanding the effect of stressors on electro-

Cell based models are not available, but in-
depth phenotyping of patients with AF may
offer solutions: electrical mapping, imaging,
blood/tissue biomarkers, genetics

Limitation: difficult to mimic chronic and multi-causal

nature of human AF

Rodents, zebrafish, Mono-causal AF

Drosophila

netically modified animals
Limitation: difficult to mimic chronic and multi-causal
nature of human AF

High reproductive rates and standardized phe-
notyping enable high throughput studies of ge-

Human iPSC-derived atrial cardiomyocytc—:s101
and engineered atrial-like heart tissue'®
Limitation: lack of studies on chronic exposure to

stressors, ageing

2.5 Inherited cardiac diseases—
cardiomyopathies, channelopathies,

and ventricular arrhythmias

The clinical classification of genetic cardiomyopathies considers struc-
tural, functional, and arrhythmogenic alterations. Genetic cardiomyopa-
thies mainly consist of dilated, hypertrophic, and arrhythmogenic
phenotypes (i.e. DCM, HCM and AC)."%"%~1% Many pathogenic genetic
variants in over hundred different genes encoding for sarcomeric (HCM,
DCM), desmosomal (AC), nuclear (DCM), mitochondrial (DCM, HCM),
and ion channel (AC, DCM) proteins have been identified. Inherited
channelopathies, caused by mutations in ion channel genes and their
interacting/modulating proteins, lead to a wide range of clinical pheno-
types, including conduction disorders, AF and familial syndromes associ-
ated with life-threatening arrhythmias and a high risk of sudden cardiac
death (e.g. long QT syndrome, Brugada syndrome, catecholaminergic
polymorphic ventricular tachycardia). The clinical variability in the ex-

110 and

pression of the phenotype, in part due to environmental factors,
the genetic and phenotypic overlap among different cardiomyopathies
and channelopathies,""""? have challenged the proper evaluation of the
clinical, therapeutic, and prognostic impact of genotyping. Animal mod-
els, iPSC-CMs, and human cardiac samples (Section 4.1) are currently
used to study the consequences of specific genetic variants. Table 6 illus-
trates animal models and animal-free cell models that are commonly
used for cardiomyopathy studies, and highlights how these models relate
to the 3Rs.

Animal models of cardiomyopathies, such as mice and occasionally
rats, have been obtained through genetic engineering.'”® These trans-
genic or knock-in models carrying human pathogenic gene variants
(mutations) are the most widely used models of cardiomyopathies.
Transgenic mouse models were the most often used method to show
pathogenicity of mutant proteins in vivo. In this approach, a large number
of copies of the mutant gene are introduced on top of the wild-type
gene, which may lead to artificially high expression levels. Gene targeting
approaches such as CRISPR/Cas9 in which a mutation is introduced in
one or both alleles of the endogenous gene reflect the genetic state of

cardiomyopathy patients better. Still, due to important biological and
physiological differences between mice and humans, these models may
not always recapitulate the human phenotypes. Recent technologies, in-
cluding CRISPR/Cas9 have advanced the field helping to extend manipu-
lation of genes to large mammals such as pigs, whose hearts are
physiologically closer to humans.'™ Alternative animal models for study-
ing genetic cardiomyopathies include Caenorhabditis elegans, animals with
naturally occurring cardiomyopathy (Section 3.3), Drosophila mela-
nogaster (Section 3.4), and zebrafish (Section 3.5). Similarities at the level
of embryonic development, structure, function, and high conservation of
gene function, combined with their ease of maintenance, short lifespan,
and easy access to approaches for genetic manipulation, make these
organisms attractive models for identifying mutations affecting proteins,
signalling pathways and biological processes implicated in cardiomyopa-
thies. They allow high-throughput screening (HTS) of gene function as
well as druggable targets that can be further validated in larger animal
models.

Research into inherited channelopathies traditionally employed heter-
ologous expression systems, such as Chinese hamster ovary cells, human
embryonic kidney (HEK293) cells, and Xenopus oocytes, for functional
investigations of the consequences and putative pathogenicity of muta-
tions. While these cell systems are inexpensive and easy to maintain and
transfect, they are limited by their dissimilarities to CMs environments.
Similarly, neonatal cells from rat, mouse or rabbit allow for overexpres-
sion or knock-down of genes followed by electrophysiological assess-
ment. However, their immaturity makes them less well suited because of
inherent differences in, for example, ion channel isoform expression and
(t-tubule) structure. These limitations can be partly overcome by the use
of transgenic animal models such as mice, rats, rabbits, and pigs.
Although mice differ in certain ion current characteristics, most notably,
potassium channels, heart rate, and autonomic regulation, they are easy
to breed and to genetically modify by either overexpression or deletion
of genes of interest, and it is easier to introduce genetic variants. More
recently, rabbits have been successfully used in transgenic studies, which
more closely resemble human electrophysiology. Overall, transgenic
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Table 6 Examples of animal models of inherited cardiac diseases and animal-free innovations

Species Pathological features

Mouse, zebrafish,
Drosophila

Targeted deletion or transgenic overexpres-
sion of genes identified in human genetic
studies, including GWAS

Refinement

Mouse, zebrafish, Transgenic animals overexpressing mutant

rabbit, pig proteins identified in patients with inher-

ited cardiomyopathies and channelopathies

Refinement

Applications

Study relevance of a specific gene
Prove causality

Gain novel mechanistic insight

Study relevance of a specific gene
mutation

Study disease progression

Animal-free alternatives

Targeted deletion or overexpression in
hiPSC-CMs

Replacement and reduction

Introduce mutation in heterologous expres-
sion systems, hiPSC-CMs
Replacement and reduction

Prove causality

Gain novel mechanistic insight

Therapeutic studies

Mouse, zebrafish, pig  CRISPR/Cas9%-induced gene mutation

Further refinement compared to transgenic
models

Rat, cat, dog Spontaneous cardiomyopathy

Refinement and reduction

Therapeutic studies

Mimicking heterozygous and homozy-
gous mutations as present in cardio-
myopathy patients

Study disease progression

Gain novel mechanistic insight

CRISPR/Cas9-induced gene mutations in
hiPSC-CMs, and patient-derived iPSC-CMs

Replacement and reduction

Introduce mutation in heterologous expres-
sion systems, hiPSC-CMs

Replacement and reduction

All animal models enable in vivo/ex vivo/in vitro analysis of (electro)physiology, histology, and molecular biology. Abbreviations: GWAS, genome-wide association studies; hiPSC-CMs,

human induced pluripotent stem cell-derived cardiomyocytes.

animals allow for in-depth electrophysiological studies in vivo (ECG,
echocardiography), in the whole heart ex vivo (optical mapping, arrhyth-
mia inducibility), on the CM level (patch clamp analysis, calcium fluores-
cence) and in combination with histological and molecular analyses as
well as long-term therapeutic studies. Advances in gene editing resulted
in step-wise refinement of animal models, moving from deletion or over-
expression of genes of interest to transgenic overexpression of specific
gene mutations, and CRISPR/Cas9 models that mimic the heterozygous
gene mutations present in most cardiomyopathy patients (Table 6).

Human iPSC-CMs provide an unlimited source of CMs from healthy
controls and patients with inherited conditions, and thereby represent
an important animal-free method for replacing animal cell studies and re-
ducing the number of animal experiments. They maintain the patient’s
genotype as cells are derived from the affected patient skin biopsy or cir-
culating cells. In addition, gene editing with CRISPR/Cas9 enables the
generation of isogenic controls that allow for the characterization of the
consequences of the genetic defect and rule out the confounding effect
of the genetic background."™® However, reprogramming and differentia-
tion remains time-consuming (up to 3 months) and costly. Furthermore,
hiPSC-CMs remain immature compared to human adult CMs at the met-
abolic, structural, and functional level (Section 4.2). For instance, hiPSC-
CMs typically lack T-tubules, form only precursory intercalated disks,
and their sarcomeres are relatively disorganized. Moreover, hiPSC-CMs
have depolarized resting membrane potentials as a result of a lack of in-
ward rectifier potassium current, with potential consequences for elec-
trophysiological analyses. Human iPSC-CMs also lack the multicellular
cardiac composition and neurohumoral control. Their integration into
EHT with fibroblasts and/or endothelial cells has, nevertheless, been
shown to increase their structural and functional maturation, as have var-
ious hormonal factors and mechanical activity."">""® Both hiPSC-CMs
and EHTs allow molecular, functional, and electrophysiological pheno-
typing, facilitating research aimed at developing strategies for personal-
ized risk stratification and therapy in inherited cardiomyopathies.' "’

Overall, there are important advantages and disadvantages of the dif-
ferent models. The selection of which model to use might be guided by
the type of research that is being conducted. Frequently, a combination
of models enabling both in vivo and in vitro studies may be required to de-
fine the molecular and functional consequences of mutations.

2.6 Valve diseases

For a long time, pathology of cardiac VD has remained elusive. Research
on this subject has been limited to observational studies in small animals,
such as mice, where genetic manipulation allows for a relatively rapid
screening of phenotypes describing valve malformations (e.g. the devel-
opment of the bicuspid aortic valve) or the evolution of valves towards a
stenotic-like condition." On the other hand, the lack of consistent larger
animals models of valve calcification, except for sheep, has prevented an
in-depth investigation of the molecular pathways underlying valve
pathophysiology.

Valves contain two major cell types: valvular endothelial cells (VECs),
which prevent thromboembolic events by covering the surface of the
aortic and ventricular side of the aortic valve producing NO, and valvular
interstitial cells (VICs), the most prevalent cell type and crucial for calcifi-
cation aortic VD (CAVD) pathogenesis.""® VICs are responsible for the
homeostasis of the ECM proteins, including collagen, elastin, and glycosa-
minoglycans, which assure mechanical stability and elasticity of the aortic
valve'" and respond to inflammatory cues by inducing a robust calcifica-
tion response.'?® Therefore, VIC functions have prompted new investi-
gations on paracrine pathways involved in CAVD [eg. transforming
growth factor-p (TGF-) signalling]. The human aortic valve opens and
closes over three billion times over an average human lifespan and is
thereby subjected to major mechanical forces. These forces include: ax-
ial stress during diastole upon valvular closure, mainly sensed by VICs,
laminar shear stress on the ventricular side during systole, and oscillatory
shear stress on the aortic side of the cusps during diastole both sensed
by VECs."?' Both excessive axial stress and lack of laminar shear
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promote the phenotype switch of VICs towards myofibroblasts, which
acting as ‘mechanosensors’, promote valve pathologic ECM remodelling,
including fibrosis and valvular sclerosis."® With further progression of
CAVD, increased valvular stiffness, myofibroblasts differentiate into
osteoblasts."**

Individuals with increased mechanical strain on the aortic cusps, due
to the congenital malformation of bicuspid aortic valves show increased
prevalence at a younger age for the development of CAVD.'?
Moreover, calcification of the aortic valve predominantly starts at areas
subjected to the highest mechanical strain and the lowest laminar shear
stress, namely the non-coronary cusp.'** It is the mechanically chal-
lenged aortic side of the valve leaflet that calcifies in contrast to the ven-
tricular side of the leaflet. Patients with increased blood pressure, and
thus valve overload, show higher risks for the development of CAVD,
highlighting that therapeutic strategies should aim to reduce biomechani-
cal forces on the valve.

Until now, no pharmacological agent was able to prevent valvular cal-
cification or promote valve repair, as valve tissue is unable to regenerate
spontaneously. Thus, heart valve replacement/repair is currently the
only available treatment to prevent HF in VD. The research focuses on
two approaches: animal models (mostly large animal models) and
animal-free strategies. Animal models have been critical for the develop-
ment of devices or innovative valve repairing/replacing techniques.
Sheep is currently accepted as the gold standard model for valve replace-
ment using defined survival surgeries that meet FDA requirements.'”
Normal cardiovascular physiological parameters of sheep approximate
those of humans in blood pressure, heart rate, cardiac output, and intra-
cardiac pressures. Also, the valve orifice diameters are similar to humans.
Animal-free strategies have become exciting alternatives to promote the
development of matrix-guided regenerated or bioengineered valves and
studies on the cardiac impact of VD. Considering the highly controlled
in vitro conditions, the potential of these animal-free strategies to un-
cover the pathophysiologic mechanisms underlying VD may even sur-
pass the potential of animal studies. Nevertheless, animal models are still
indispensable for studying specific aspects of VD. Table 7 depicts the
most commonly used animal models of VD, their potential applications
and currently available animal-free alternatives.'?¢™'>

2.7 Vascular pathology—atherosclerosis
Atherosclerosis, the underlying process of the majority of cardiovascular
diseases, is a lipid driven chronic inflammatory disease. The disease is
characterized by the accumulation of lipids and immune cells in the arte-
rial wall: the atherosclerotic plaque. Atherosclerotic plaques can cause
stenosis by gradually reducing the arterial lumen or cause acute arterial
occlusion by plaque erosion or rupture. These processes result in ischae-
mia and, depending on the arterial bed affected, result in cardiovascular
events including angina pectoris, Ml, stroke, or peripheral arterial dis-
ease."*® The pathogenesis of atherosclerosis is complex and years of re-
search in patients and experimental animal models have taught us that a
combination of systemic environmental factors (e.g. flow, shear stress,
oxidative stress, inflammation, endocrine factors and hyperlipidaemia)
and plaque intrinsic factors [e.g. cellular lipid uptake, endothelial cell acti-
vation, vascular smooth muscle cell (SMC) migration, ECM production,
immune cell recruitment and activation] and most importantly cell-cell
interactions between immune cells and between immune cells and non-
immune cells all drive atherogenesis.137

For decades, most groundbreaking insights into this complex disease

have been obtained by studies in laboratory animals (Table 8).#041138151

Until the 1990s, the most widely used animal models for atherosclerosis
were cholesterol-fed rabbits, pigs, and non-human primates. These mod-
els, especially the pig and non-human primate, have a very similar cardio-
vascular physiology to humans, but need a long time (>1year) for
developing minimal disease and even longer to develop advanced ath-
erosclerosis (see Section 3.2).147 The design of transgenic mice that lack
genes important in lipid metabolism, such as the LDL-receptor and apoli-
poprotein E, was a major step forward and further refined animal models
for investigation of atherosclerosis. Not only do these mouse models de-
velop widespread atherosclerotic lesions in a reproducible way within a
few months, but the development, progression, and growth of lesions
show features reminiscent of human atherogenesis.M&149 A major ad-
vantage of these mouse models is that they can easily be backcrossed to
other cell-type specific genetically modified mice in order to not only
study the role of specific genes on plaque development, progression, and
composition but also the effects of systemic alterations caused by these
respective genes on atherosclerosis.'*® One of the major drawbacks of
animal models of atherosclerosis is the lack of end-stage atherosclerosis
with spontaneous plaque rupture.149 Although very old ApoE’/’ mice do
develop intraplaque haemorrhages, spontaneous rupture of the fibrous
cap whereby the thrombus is in continuity with the necrotic core, or
spontaneous plaque erosions have only rarely been observed."* For
studying the process of atherosclerotic plaque rupture or the post-
rupture healing process, models in which acute plaque rupture is induced
mechanically or by vasoconstriction have been developed. For example,
in atherosclerotic mice, mechanical plaque rupture was induced by
gently squeezing the plaque-bearing aortic segment of the abdominal
aorta between blunt forceps.15° Other models of plaque rupture include
models in which a plastic cuff is placed around the carotid artery, fol-
lowed by ligation of the arter'y.ﬁ1 A few genetic models, including SRBI”
'/ApoE'/' mice* and Fb1'/'ApoE’/’ mice*" show spontaneous plaque rup-
ture with end-organ damage including stroke and MI.

Many alternative cell- and model-based efforts are currently being de-
veloped and the first results are quite promising. However, atherosclero-
sis is a complex, multifactorial disease which cannot be mimicked using
such a ‘lab on a chip’ approach. As the interactions between many differ-
ent immune cell types, flow, shear stress, hyperlipidaemia, and endocrine
factors all affect its pathogenesis, we still need to make use of living
organisms, especially mice. Noteworthy, in atherosclerosis research, we
are reducing the number of laboratory animals used by carefully design-
ing our experiments and testing aspects of the disease as much as possi-
ble in in vitro systems. Recent developments in single-cell technologies
(transcriptomics and mass c>"cometry)152’154 and the design of novel
computational tools has enabled us to more carefully select our candi-
dates and targets, thereby reducing the number of laboratory animals be-
ing used. Aspects of the disease, including endothelial cell biology, lipid
uptake, leucocyte recruitment, and immune cell activation can be studied
in 2D in vitro systems, using cell-lines or iPSCs, thereby limiting research
in laboratory animals. Advanced 3D in vitro models are being developed.
Furthermore, new and improved animal models of vascular disease (i.e.
humanized mouse models) are currently under development.

2.8 Vascular pathology—aneurysms

Aortic aneurysms (AAs) are a complex cardiovascular disease, most
likely to develop in the abdominal area. It is associated with risk factors
such as advanced age, male gender, genetic predisposition, smoking, and
other cardiovascular comorbidities. Currently, the only available treat-
ment for AAA is surgical repair or efforts to improve general
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Table 8 Examples of animal models that mimic human atherosclerosis

Main changes in the heart and vasculature

Animal-free alternatives

Atherosclerotic lesions of all vessels
Human-like atherosclerotic lesions and micro-

Obesity and metabolic syndrome like humans
Hypertension, diabetes, kidney disease, endothe-

Slow development of atherosclerosis

Species Model
Pig Familial hypercholesterolaemia
Yucatan and Sinclair miniature pigs fed with
Alloxan resulting in diabetes vascular diseases
Ossabaw pigs
PCSK?9 gain-of-function mutant
lial dysfunction
Non-human  High-fat, high-cholesterol diet in Rhesus and
primate cynomolgous macaques
Novel gene-modification technologies, e.g. Accelerated atherosclerosis
CRISPR/Cas9
Mouse Transgenic mice with lack of genes involved

in lipid metabolism (LDL-receptor, apoli-
poprotein E)

SRBI"/ApoE™,

Fb1”ApoE”

Accelerated atherosclerosis; spontaneous plaque
rupture is rare

Refinement: Induction of plaque rupture

Spontaneous plaque rupture with end-organ

damage including stroke and Ml

Studies on certain aspects of
atherosclerosis:

Single-cell technologies human tissue
samples's2 15+

2D and 3D in vitro models

Refinement and reduction

138,139

140,141

142

143,144

146

146

148,149

150,151

40,41

cardiovascular health. There are no other effective therapies or drugs
because the process leading to AA is ambiguous."® Previous studies im-
plicate defects in SMCs, ECM remodelling, inflammation, and oxidative
stress as key factors in the pathogenesis.'*® However, treatment strate-
gies to intervene in the oxidative stress pathway or inflammation have all
failed in clinical practice. The underlying pathophysiological processes
behind the long-term chronic development of AAA have to be
unravelled.

Extensive studies and models have been developed to understand
AAA (Table 9).""77'%? Research started with in vivo animal models.
Murine models are the gold standard of experimental in vivo AAA re-
search. Various different models, each with individual limitations, are ca-
pable of providing partial simulation of human pathology. One common
feature of all AAA models are the required external stimuli to initiate
aortic dilatation. The most common ones are angiotensin Il (Angll), por-
cine pancreatic elastase (PPE), and CaCl, instillation."’” Experimental
Angll-induced AAAs require mice with an atherosclerosis-prone back-
ground, such as Apolipoprotein E/ApoE or Low-density lipoprotein re-
ceptor (Ldlr) deficiency. Angll-AAAs display suprarenal aortic aneurysms
and are commonly associated with covered ruptures or dissections.'*®
The murine PPE model presents many histo-morphological features as-
sociated with human AAA disease.”® A promising modification of the
model that utilizes external peri-adventitial elastase application in combi-
nation with B-aminopropionitrile (BAPN) to provoke acute rupture and
intraluminal thrombus formation has been reported.'®’ In addition to
small animal models, several studies report AAA formation in large ani-
mals (mainly pigs) that have the advantage of exploiting similar anatomi-
cal and physiological dimensions to humans, allowing the application of
devices and surgical techniques.'®*~"®* It appears evident that further
advancements in small animal models as well as refinement of large ani-
mal models (e.g. using Ldlr-deficient mini-pigs) will enhance studies of
unmet translational research questions. However, today no available
model closely resembles human AAA characteristics. Recent studies are
conducted on the first steps towards the development of an in vitro pre-
clinical disease model for AAA (Section 4.4).

3. State-of-the-art in animal models

Animal models allow for in vivo and ex vivo functional and electrophysio-
logical studies at various disease stages in correlation with molecular and
histological findings, as well as for research into the impact of stressors
such as exercise and comorbidities, ageing and chronic effects of phar-
macological interventions. The latter aspects are not easily mimicked in
animal-free cell and tissue models (Figure 1A). The following paragraphs
describe limitations and opportunities of current animal models.

3.1 Rodent models

Rodent models are widely exploited as they provide biological insight at
the organ and cell level, are hypothesis-generating in pathophysiological
processes and provide the opportunity for body dose-response testing.
The major advantages of these models are relatively easy genetic manip-
ulation, availability of biomedical tools with rodent specificity and their
relatively low cost. Below we review some of the major limitations of ro-
dent models and provide promising perspectives to refine and improve
their research use.

Rodent models are often used to study the function of a specific pro-
tein or mutation. This was initially analysed using pharmacological inhibi-
tors and/or activators, but pharmacological treatments were increasingly
criticized for their unspecific effects. Nowadays, genetically engineered
mice are the standard in cardiovascular biology, because they permit the
modification of a single gene or specific mutation and to examine their
function in an integrated physiological system. Two genetic technologies
exist, insertional transgenesis (transgenic animals in which additional
copies of a gene are inserted) and gene targeting (knock-out to function-
ally remove a gene, or knock-in to introduce a mutation in a gene).
Inducible tissue-specific gene-targeting systems based on the Cre-loxP
technology are preferred, to overcome the limitations of global gene tar-
geting which include: embryonic lethality, compensatory changes over
time and effects related to gene deletion in organs not under investiga-
tion. However, numerous pitfalls have to be considered when interpret-
ing data obtained from genetically modified animals."®® For example,
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Table 9 Examples of animal models of aneurysms and animal-free alternatives

Species Pathological features

Mouse
ANGII-model

Dilation of suprarenal aorta, dissection,
covered ruptures, intraluminal throm-

bus formation

Mouse, rat Dilation of infrarenal aorta, elastic layer

PPE-model fragmentation, smooth muscle cell ap-
optosis, increased immune cell
infiltration

Mouse Dilation of infrarenal aorta, enhanced in-

Ca,Cl,-model flammation, smooth muscle cell
apoptosis
Mouse

PPE&BAPN model

Chronic, advanced-stage AAA with per-
sistent growth, thrombus formation,

spontaneous rupture

Pigs/Mini-pigs
PPE-model

Dilation of infrarenal aorta, elastic layer
fragmentation, smooth muscle cell ap-
optosis, increased immune cell

infiltration

Applications

Therapeutic intervention studies

Therapeutic intervention studies

Therapeutic intervention studies

Therapeutic intervention studies;
chronic effects of treatment

strategies

Therapeutic intervention studies;
device development and testing

Animal-free alternatives Refs

Not available

Not available 159

Not available 160

Use of vasculature on a chip devices Tel

where the geometry and the flow/wall
stress is modelled with computational
flow dynamics (Section 4.4)
Replacement and reduction
Use of human umbilical cord-derived ar- 1671
teries to simulate aneurysm dilatation
and stent implantation

Replacement and reduction

Abbreviations: ANGII, angiotensin II; PPE, porcine pancreatic elastase; BAPN, f-aminopropionitrile.

both the Cre protein and Tamoxifen, used to activate the Cre, can have
cardiotoxic effects.’®®'®” While overexpression of any protein might in-
duce undesired effects, its knock-out might also affect the whole prote-
ome."®® Both pharmacological and genetic approaches have potential
limitations and may be combined to strengthen the understanding of
protein—function relationship.

Additional limitations are the difficulty in translating results generated
in rodents to humans, with particular reference to novel therapeutic
strategies. Firstly, rodent models are usually developed in healthy and
young animals. While some models consider comorbidities, they fail to
reproduce the complexity of cardiovascular disorders in humans and
lack routinely used medication or other disease-influencing effectors
thereby oversimplifying human disease. A second issue to consider is ge-
netic background of mice, as phenotypes may differ significantly between
different strains which may confound results. However, combining phe-
notypic analysis, expression data in cardiac tissue and genetics offers the
unique opportunity to identify new disease-related genes and path-
ways.“’g'170 Thirdly, rodent hearts poorly mimic the human heart, partic-
ularly in terms of heart rate and collaterals. Fourthly, while systematic
reviews/meta-analyses are commonly performed to improve clinical
practice,171 they are underused in experimental research. Most rodent
studies are conducted in a single research facility as a proof-of-concept
study. Just like clinical trials, large multi-centre preclinical studies should
be initiated to validate findings and to ensure their reproducibility (see
Section 5.1), although sustainability may be challenging and require the
support of large funding schemes. Societies, funding agencies, and jour-
nals should agree on common standards for experimental animal studies
with regard to randomization, blinding, and information on age, sex, and
comorbidities, to at least be made available as supplemental data.
Standardization would allow increasing data robustness and quality,
extracting new data from previous studies, reducing the number of ani-
mals, and be in compliance with the 3R policy.172 Along the same line, an

additional step forward would be establishing repositories of samples
from rodent models, with biobanks maximizing tissue usage from eutha-
nized animals. While a particular organ might be the target of a specific
study, the remaining tissues could serve the goal of research groups fo-
cusing on other organs and systems, thereby reducing the number of re-
search animals and replacing living animals with stored samples. Again,
the critical aspect here is assuring that organs, tissue or cells are col-
lected and preserved according to established protocols, to ensure high-
quality samples, paired with controls and accurately linked to compre-
hensive databases providing relevant information. Finally, assessment of
cardiovascular function in rodents should privilege methods that avoid
invasive or terminal procedures, such as echocardiography, magnetic
resonance imaging (MRI), and telemetry. Both echocardiography and
MRI allow for complete, repeated and non-invasive assessment of sys-
tolic and diastolic function. MRI shows the advantage of providing infor-
mation regarding cardiac metabolism. However, its use is limited due to
its high costs. In contrast, echocardiography is widely used and standard
procedures for echocardiographic assessment have been recently pub-
lished aiming to increase accuracy and reproducibility of the data,”
Telemetry systems involve surgically implanting small devices (tele-
meters) into the animal. These telemeters assess and emit wireless sig-
nals from conscious, non-restrained animals, to a receiver outside the
cage. Progress in device miniaturization and battery duration allow for
continuous recording of data and for the merging of several cardiovascu-
lar parameters in the same telemeter (ECG, blood, and intraventricular

pressure) with minimal human-animal contact.'”

3.2 Large animal models

While ‘refine’ and ‘reduce’ of the 3R principles (Table 1)* can be consid-
ered in many animal experiments, the ‘replace’ is difficult and is often
questioned. Large animal models are mandatory for translational re-
search before entering into clinical trials in most of the drug and class Il
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medical device development projects. The translational value of large an-
imal models, including dogs, pigs, sheep, and non-human primates is high,
due to their similar cardiovascular physiology and cellular biology to
humans.'>""8 An additional advantage of large animal models is their
size, allowing for the study of clinical imaging modalities, device implanta-
tions, and mechanical interventions. Another advantage, as compared to
small rodents, is that per animal many simultaneous or serial tissue and
blood samples can be taken, avoiding the need for a separate group of
animals for each measurement. Despite their non-disputable advantages,
large animal models are costly, require specific infrastructure and han-
dling and lifespan and gestation times are longer. Genetic manipulation
of these animals is difficult and may raise ethical questions, but if success-
ful, genetic pig models are extremely helpful in the design of new thera-
pies."™* Below is a brief, non-exhaustive overview of available large
animal models.

HFrEF or ischaemic—reperfusion injury without infarction mimic hu-
man ischaemic heart diseases very closely (Table 3).**>7 In contrast to
dogs, pigs (like humans) have sparse coronary collaterals. Therefore, pig
or mini-pig ischaemic/reperfusion/infarction models were introduced.
The porcine closed-chest reperfused MI model mimics the primary per-
cutaneous coronary intervention in ST-segment MI, and just as in
humans, cardiac function can be comprehensively investigated with car-
diac MRI*® Such models successfully mimicked the neutral or minimal
cardioprotective effect of ischaemic conditioning seen in clinical trials.>’
The size and shape of Mls in pigs are also more like those in humans as
compared with infarctions in rats and mice, where infarct size often
amounts >50% of LV mass, which is lethal in large animals and in humans.
Therefore, results from studies on infarction in pigs are better compati-
ble with those in humans than rodent studies. Atherosclerosis-induced
vessel lesions, a major cause of HFrEF, can be simulated in large animal
models with high translational power (Table 8).1387146 Whereas dogs are
more resistant to the development of atherosclerosis, spontaneous ath-
erosclerosis occurs with ageing in pigs and non-human primates, as it
does in humans, which can be accelerated with a Western diet."**"%
Currently, there are four atherosclerotic pig models available: diabetic
(type 1 or type 2) and/or diet-induced hypercholesterolaemic pigs; the
Rapacz familial hypercholesterolaemic (LDL receptor mutant) pig; and
Ossabaw pigs and PCSK9 gain of function pigs.'*3414271% These por-
cine models produce human-like atherosclerotic plaques and impor-
tantly diagnostic and treatment studies in these models have
corroborated observations in humans. Interestingly, these models also
display marked coronary microvascular dysfunction and as such are ex-
cellent models for investigating microvascular disease."**"** Non-human
primates, including rhesus and cynomolgous macaques, also recapitulate
human-like hypercholesterolaemia when put on a high-fat/high-choles-
terol diet, which after several years results in fibrofatty plaques.'* This
slow development of atherosclerosis, together with societal concerns,
has resulted in restricted use of the non-human primate model for ath-
erosclerosis studies. Perhaps with the advancement of genetic manipula-
tion, accelerated atherosclerosis of primate models will be possible.'*

Structural cardiac remodelling, such as hypertrophy or fibrosis, can be
induced in pigs by implantation of stents or an inflatable aortic cuff, which
results in a gradual pressure overload of the LV thereby causing hyper-
trophy, impairment of relaxation and HF symptoms.”>”® The latter mod-
els may be used to model HFpEF-related structural concentric
remodelling and coincident diastolic dysfunction (Table 4). Subcutaneous
implantation of deoxycorticosteroneacetate (DOCA) pellets in combi-
nation with a Western diet resulted in chronic hypertension-induced
myocardial hypertrophy with impaired relaxation and preserved LVEF in

pigs,”® while treatment with cardiotoxic cancer drugs such as doxorubi-
cin cause remodelling of the pig heart, including fibrosis and reduced sys-
tolic function.** As described in Section 2.3, mimicking HFpEF in a large
animal model represents a challenge, and thus far most models incom-
pletely mimic the clinical phenotype and may show hypertrophy and dia-
stolic dysfunction without clinical HF characteristics. The addition of
relevant interventions or comorbidities is essential to trigger the micro-
vascular dysfunction associated with systemic metabolic stress.®>'”?

An area where experiments on dogs have been indispensable for
developments in understanding of disease and development of new ther-
apy is dyssynchrony, induced by intrinsic conduction block in one of the
bundle branches or by pacemaker therapy for bradycardia purposes.
Dog experiments showed how abnormal conduction of the electrical
impulse through the ventricles creates different contraction patterns and
loading conditions in opposing ventricular wall segments, thereby lower-
ing ventricular pump function, followed by adverse remodelling over
time, with very diverse molecular abnormalities.'® These experiments
also showed how cardiac resynchronization could cure all these abnor-
malities.'®" Other animal species turned out to reflect the human situa-
tion less well."® Atrial and ventricular arrhythmias and sudden cardiac
death can occur during the development of myocardial disease, or during
pacing-induced rhythm disturbances in several large animal mod-
els 7104105183184 |y |arge animals AC, DCM and HCM are diagnosed
and represent an interesting alternative model to study arrhythmias and
cardiac dysfunction in genetic heart disease (described in Section 3.3). In
addition, valve insufficiency and stenosis are mimicked in several large an-
1337135 4nd are used to study pathomechanisms as well as to
test novel therapeutic interventions. For the development and testing of
heart valve prostheses large animal models became indispensable (see
Section4.4). Sheep were extensively used to test prostheses based on bi-
ological materials especially as sheep had a very sensitive reaction with
calcification if there were impaired graft conditions. As a result, heart
valve prostheses based on decellularized allogenic valve matrices were
directly introduced into clinical application after successful testing in
sheep.'®'% The pig has become a common transgenic animal model,
and genetically modified porcine tissues and organs are gaining the atten-
tion of xenogeneic transplantation medicine. Furthermore, whole ani-
mals may also serve as ‘humanized’ recipients. Baboon, an old world
monkey, lacking the prominent xenoantigen alpha-Gal is considered to
be the large animal for testing immunological aspects. Therefore, geneti-
cally modified porcine tissues (e.g. decellularized heart valves, and
organs) are tested in baboons.'®

An example of the complexity and paradox of the cardiovascular sys-
tem research is tissue-engineered heart valves (TEHVs), any other vascu-
lar conduits, or organic patches that can be constructed without using
animals. However, to prove the safety and efficacy of the medicinal prod-

imal models

uct, they must first be implanted in animals before human use. Additional
comorbidities, such as diabetes and/or hypertonia-induced chronic kid-
ney disease and related alterations in organ function would be possible
to mimic in large animal models, but due to their complexity and cost,
such models are rarely applied.

3.3 Companion animals

Naturally occurring large animal models have mostly been found in com-
panion animals or livestock, as these animals ubiquitous in our society
because of their emotional and economic value."®” The most prevalent
non-ischaemic cardiomyopathies in humans are commonly diagnosed in
companion animals. HCM is the most common feline cardiac disease af-
fecting around 15% of all cats."®® Mutations have been reported in
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MYH7"®? and MYBPC3."%"1 DCM is more common in dogs and affects
mainly large breeds, including Doberman, in which its prevalence reaches
58% and predominantly affects males."”>"” The two main histological
findings described in canine cardiomyopathies include attenuated
wavy fibres, occurring in various breeds, and fibro-fatty infiltration of the
myocardium, mainly observed in Boxers and Doberman Pinschers.

As in humans, canine DCM has a strong genetic basis with marked
familial transmission. Human DCM-associated mutations have been
reported in dogs in PDK4, TTN, DMD, and PLN gene.'*'*> Finally, AC
is commonly diagnosed in Boxers and as in humans, it is character-
ized by fibrofatty replacement, ventricular premature complexes and
ventricular tachycardia.1%'197 Being large animals, companion animals
have weight, metabolism, and pharmacokinetics that are closer to
humans than rodents, allowing therapeutics to be tested for efficacy
and toxicity using a relevant regimen. Coupled with the fact that
they are relatively outbred, share our environment, are often aged
and affected by multiple comorbidities, companion animals make ideal

for testing novel therapeutic interventions (ie. gene
198,199

models
therapy).

3.4 Drosophila
For several years, the Drosophila heart has been used as a tool to
study various aspects of the heart, including development, mechanisms
of cardiac diseases, and drug screening. The Drosophila heart is a linear
tube, reminiscent of the primitive vertebrate embryonic heart tube.
Although the final heart structure in Drosophila is very different com-
pared with that in vertebrates, the basic elements for heart develop-
ment, function, and ageing are conserved.?® In addition, Drosophila
offers the opportunity to manipulate gene expression in a highly pre-
cise spatial and temporal fashion, using the UAS/GAL4 system.?*! This
system was successfully utilized to identify genes causing cardiac dis-
eases, including AF and cardiomyopathies.>”" New techniques, such as
optical coherence tomography, allow accurate phenotyping of cardiac
diseases, including HF, HCM, DCM and AC as well as cardiac arrhyth-
mias, such as AF, in flies.”®

Because of its simplicity, ease of culturing, and genetic interventions,
the Drosophila heart has also been successfully used for drug and
genome-wide screening assays, for example, to screen for novel drugs
directed at conservation of the proteostasis pathway, which underlies
AF.202 Finally, the Drosophila heart has been exploited to verify the out-
comes of a human genome-wide association study (GWAS) on genes re-
lated to heart rate.”® In this GWAS, 21 loci associated with the heart
rate were identified. Experimental down-regulation of gene expression
in Drosophila confirmed the relevance of 20 genes at 11 loci for heart
rate regulation and highlighted a role for the involved signal transduction
routes, embryonic cardiac development and the pathophysiology of
DCM, congenital HF, and/or sudden cardiac death.

3.5 Zebrafish

Since their introduction into the biomedical research arena in the 1970s,
zebrafish (Danio rerio) have become widely used to study cardiac function
and disease due to their tractable genetics.”®* Sequencing the zebrafish
genome in 2013 revealed that >80% of human disease-related genes
have an orthologous gene in zebrafish.”® Together with new develop-
ments in genome editing techniques, such as Talens and CRISPR/Cas9,
efficient protocols were generated for gene knock-outs, knock-ins, and
‘humanized’ fish carrying human-specific disease alleles.*®® A promising

feature is that the larvae are small, completely transparent, display similar
cardiac electrophysiology to humans and readily take up chemicals from
the water, so that they can be grown in a 96-well plate and used for drug
screenings.”%” Several compounds that have been identified in zebrafish-
based assays, are now being tested in clinical trials.

Despite clear anatomical differences, as the two-chambered zebrafish
heart consists of an atrium and a ventricle, all major cardiac cell types are
present, this allows for the study of their origin, regulation and function.
Thus, the zebrafish has proven useful for studying numerous cardiac pa-
thologies. Due to its regenerative capacities, cardiac regeneration
remains the most frequently studied process. Upon injury, CMs are able
to de-differentiate, proliferate and re-differentiate into mature CMs reca-
pitulating embryonic development of the myocardium.208 In addition to
cardiac regeneration, inhibition or genetic deletion of pathways can be
very helpful for identifying mechanisms of congenital malformations.2**

What the zebrafish community currently lacks is a reliable method to
create conditional knock-outs, allowing for the investigation of gene
functions in a tissue-specific manner. Hopefully, new developments using
CRISPR/Cas9 will resolve these.

4. Models and tools to reduce,
refine, and replace research in
laboratory animals

4.1 Human tissue samples

Research tools to study cardiovascular (patho)physiologic properties in
adult myocardium and blood vessels require careful tissue sampling and
storage. A pioneer in setting up a cardiac tissue bank is Prof. dos
Remedios, who initiated The Sydney Heart Bank in 1989. Cardiac sam-
ples in the Sydney Heart Bank have been collected in a highly routine
manner, assuring high quality of tissue samples that have been key in ad-
vancing cardiovascular science in many areas ranging from genetics to
functional muscle studies.”® RNA deep sequencing of human samples
(e.g. cardiac muscle biopsies, vessels) that are obtained during cardiac
catheterization or surgery from patients at different disease stages allows
molecular profiling, pathway analysis and therapeutic target discovery in
relation to different cardiac disease phenotypes.*'® Adult human tissue,
either as membrane-permeabilized myofibrils, CMs and muscle strips, or
intact CMs and SMCs, allow studying myofilament kinetics, myofilament
calcium sensitivity, ATP consumption, metabolism and mitochondrial
function, electrophysiology and response to different pharmacological
agents.2""7 As the preparations are derived from adult hearts, the
physiological relevance and pharmacological predictivity are high. Adult
CMs are relatively delicate cells, difficult to maintain in culture and have a
limited lifespan and potential for expansion. Myocardial tissue slices of
human samples represent a new opportunity for studying human tissue
over a longer time span in culture. The methodological and technological
progress associated with living myocardial slices (LMS) preparations and
in vitro culture have increased the interest in this research platform. LMS
are 200—400 pum thick sections of living myocardium where structure,
function and biochemical properties of the in situ heart are largely pre-
served.?'®217 As such, LMS can be used to study the connections, net-
works and interplay between the different cardiac cells in a more
controlled, comprehensive and realistic manner. LMS thinness allows for
oxygen and nutrients diffusion which is critical during experimentation
and chronic culture. A high-precision vibratome is required to produce
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LMS, the slicing is very precise and automated, this is a prerequisite for
higher throughput. Between 2 and 9 LMS can be prepared from mouse
or rat hearts. However, this number can increase to hundreds when
large portions of myocardium are available from large animals or human
samples. The LMS technology may significantly reduce the number of
animals needed for experimental studies. The preparation of LMS from
human specimens is also crucial for translational research.22° A large va-
riety of assays can be applied to interrogate LMS. Functional parameters
include, but is not limited to: contractility, conduction velocity, Ca*t
transients, action potentials and metabolism.2"®22" Structural assessment
provides analysis of cellular and ECM organization, In addition, specific
biomolecules can easily be labelled and visualized. Biochemical assess-
ment can also be used to assess LMS genomic and proteomic
signatU|res.222'223

Novel biomimetic technologies allow LMS to be maintained in vitro in
a highly functional state and cultured in stable conditions for extended
periods,”2**% this allows for novel areas of cardiovascular research to
be unravelled. Unique therapeutic research applications may utilize long-
term efficacy prediction, RNA-based target evaluation, cell-based regen-
eration, and high-content analysis by RNA-seq. With standard couriers
being used for tissue specimens or LMS movement, it is likely that labora-
tory networks will soon be formed to share human material that will re-
duce waste of tissue and increase data collection.

Like any other research model, LMS have limitations that should be
carefully considered. Tissue damage occurs during cutting which is likely
to trigger inflammatory responses and tissue remodelling. In addition,
LMS are disconnected from the circulatory system and neuro-hormonal
stimulation. The heterogeneity among LMS obtained from the same
heart, as a result of the region that is sliced, should also be considered.?*®
Furthermore, the lack of standardization across laboratories may result
in variable readouts. Biomimetic approaches have enormously improved
LMS in vitro culture, however, the preparations progressively adapt to
the new in vitro environment that over time results in an alternative phe-
notype. This adaptation could potentially be controlled by culture condi-
tions and improved biomimetic technologies. It might even level out the
variability among samples from diseased individuals. Even though LMS
have a bright future several challenges remain that have to be tackled.
The standardization of LMS preparation and culture requiring refine-
ment, education and validation of research readouts and applications,
are a priority.

Isolated segments of human blood vessels (e.g. human mammary ar-
teries, human coronary arteries, renal arteries, organ-specific vessels or
aneurysm samples) can provide unique insights into disease pathology in
patients, through western blotting, RNA studies as well as functional va-
somotor studies.”"?2® Moreover, 24-48 h orgainoid culture can provide
valuable pharmacological and mechanistic information. Human mam-
mary arteries (IMAs) are most readily available as a model of systemic
vascular function regulation and vascular oxidative stress. While IMA
does not develop atherosclerosis, it is sensitive to local pro-
atherosclerotic insults eliciting endothelial dysfunction and oxidative
stress.2?? This approach may be most effectively used in combination
with other methodologies described here to identify key novel mecha-
nisms in a translational fashion.

While the demanding logistics represent a challenge, and sample avail-
ability is relatively limited, human cardiac, vascular and valvular tissue
samples have proven an essential tool to uncover mechanisms of human
disease and sex differences. Moreover, human tissue samples provide an
excellent basis for validation of the hiPSC-derived models described
below.

4.2 Human stem cell-derived cardiovascu-
lar cells and their 3D derivatives

The advent of methods to reprogramme somatic cells (e.g. from skin, ad-
ipose tissue, peripheral blood and urine) to human iPSC as well as the
derivation of bona fide CMs and other cardiovascular cell types at princi-
pally unlimited scale, has boosted research in this area by complement-
ing, and occasionally replacing animal experimentation. Recent advances
in differentiation |:>rotocols230 and mimicking organ-like function in vitro
will further enhance this trend.

The human biology of hiPSC-derivatives principally increases the valid-
ity and translatability of experimental results when compared with cells
from animal species, particularly rodents. Cultures of hiPSC-derivatives
are generally more stable and produce more robust data than freshly iso-
lated primary cells, tissues or organs (e.g. Langendorff-perfused hearts),
which represent dying-cell-models. Human iPSC-derivatives represent a
biological basis that is more physiologically relevant for mechanistic stud-
ies than the available immortalized cell lines. The genetic background of
patient-derived hiPSC allows for modelling of individual disease mecha-
nisms and susceptibility. Furthermore, direct access to pharmacological
and genetic manipulation in vitro (e.g. by gene editing) facilitates studying
direct drug/gene cause—effect relationships under controlled conditions.
Moreover, cellular models can be exploited to identify both cardiopro-
tective and pro-proliferative therapies and are particularly amenable to
HTSs (Section 4.5). Co-cultures of various hiPSC-derived cell types can
decipher some cell—cell interactions in a forward manner, which can be
combined with tissue engineering to provide organoid-shaped and
biomechanical-modelled platforms.

Human iPSC-derivatives exhibit a fetal rather than adult phenotype
with only partially canonical function.*" Human iPSC-CM, such as foetal,
neonatal and immortalized cells, have poorly developed mitochondria
and rely on glycolysis rather than substrate oxidation.?* Consequently,
they exhibit a high basal glucose catabolism with poor insulin responsive-
ness (i.e. only at supra-physiological insulin conc:entration).233 Whereas
differentiation protocols introduce batch-to-batch variation, reprogram-
ming and long-term culture can induce artefacts such as karyotype ab-
normalities and epigenetic alterations that are difficult to control2* In
vitro assays only partially capture disease-relevant whole organ functions
(e.g. arrhythmias and diastolic heart function). Of the most common hu-
man pathology ischaemic damage by blood vessel occlusion, only the
earliest stage of ischaemia can be modelled in vitro (Table 3). Cell—cell-
based mechanisms (e.g. through the dynamic influx of inflammatory and
immune cells) are difficult to explore in vitro. In models of iPSC-derived
cardiac tissue, vascularization and ultimately perfusion are key challenges
that are often underestimated in their influence on cell behaviour and in
their relevance for rebuilding more physiological tissue. Moreover, the
limited time lines of in vitro experiments impede assessment of cardiovas-
cular disease mechanisms that often act over many years. This limitation
also applies to the most common animal models, but multicellular
responses could, in principle, be better assessed in animals. Major cardio-
vascular risk factors and comorbidities such as ageing and metabolic dis-
eases, including hyperlipidemia and diabetes, can only partially be
addressed in vitro. Organ—organ interactions (e.g. effects of the liver, gut
or brain on heart function) cannot be captured in current in vitro hiPSC
cultures.

Solutions to increase the applicability of hiPSC-derived cell systems
for cardiovascular studies are described below:

® Reduce experimental variation: Employing established quality standards,
such as: the obligatory use of standard operating procedures, master
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and working cell banks, defined passage number, proven normal kar-
yotype, high pluripotency marker expression, isogenic controls (e.g.
by CRIPSR/Cas9 gene editing), minimum repetition of experiments in
three batches from three lines, and standardizing circadian time will
reduce variability.”*>**® Worldwide hiPSC banking initiatives such a
hPSCreg (http://hpscreg.eu) add to this standardization. Furthermore,
automation has the potential to reduce experimental variation®” and
will likely become more common in high-throughput facilities (e.g. for
drug screening). The high costs for initial investment and maintenance
limit a more widespread application in academia.

® Improve maturity: Refinement of culture media composition (e.g. en-
ergy substrates, hormones and growth factors)*®%* as well as cultur-
ing of hiPSC-CM on matrices with tunable stiffness, 2241 Matrigel
mattresses,”** or micropatterned surfaces”®** have been shown to
improve the maturity. Consistently, lowering glucose and adding fatty
acids have been shown to improve the metabolic maturity of
hiPSC-CM, reflecting the fact that the use of glucose is inhibited by
fatty acid oxidation in a fasting state and is stimulated by insulin in a
fed state.*** 3D Multicellular constructs, mechanical loading, and elec-
trical pacing (e.g. in EHT) are some of the most effective means to im-
prove the structural, metabolic, electrophysiological, and contractile
maturity of hiPSC-CM and the spectrum of functional readouts.?*>4
Further improvements are expected from co-cultures of hiPSC-
derived CMs, fibroblasts, endothelial cells, neurons, immune cells, and
others.**” So far, several differentiation protocols for the respective
cell types are available,2* but it is still not known how well these cells
resemble the organ-specific cells in their respective environment (e.g.
cardiac endothelial cells). More work is needed to achieve truly adult-
like CMs/heart tissue from hiPSC.

® Improve the functional readout: Simultaneous measurements of force,
calcium transients, and membrane voltage by fluorescent dyes (e.g.
Fluo-4, FURA-2, Arclight, Fluovolt,?***° or genetically encoded cal-
cium sensors such as GCaMP6f''®) improve the depth of phenotypic
characterization of hiPSC-CM/EHT and allow analysis, including
arrhythmias, in intact preparations.”’ Sharp microelectrode action
potential recordings reduce confounding influences of cell isolation
and the small size of hiPSC-CM compared to patch clamp record-
ings.252 However, tissue damage and localized ischaemia may occur,
and patch clamp recordings in isolated hiPSC-CMs with or without
dynamic clamp may be considered for certain studies.

® Study hiPSC phenotypes under disease-provoking conditions: Experimental
setups that allow the manipulation of matrix stiffness or afterload in
3D constructs can provoke phenotypes masked under basal condi-
tion.2*?>3 Influences of common comorbidities on disease pheno-
types in patient-derived hiPSC-CM or the effect of simulated
ischaemia may be studied by applying hyperglycaemic and hypercho-
lesterolaemic culture conditions as shown in fetal rat myocytes.”>*
In vitro vascularization may allow for the study of mechanisms of
thrombosis and ischaemia in vitro.”>>

® Study organ—organ interactions: Organ-on-chip approaches (i.e. micro-
fluidic culture systems in which organotypic cell types are cultured in
one or multiple compartments connected by circulating medium) of-
fer the opportunity to study organ-like function or complex interac-
tions between organs of the human body, for example, between the
drug-metabolizing liver and the heart (multi-organs-on-chips).>*® Even
though perfusable tissue surrogates are available, but they are still far
from replicating a vascularized organ with chambers, conduction sys-
tem, and physiological function, and would therefore only enable par-
tial replacement of animal experiments. The potential of these new
approaches has to be weighed against their technical complexity.
Moreover, the necessary simplification of culture conditions may in-
terfere with the desired maturity of the respective ‘mini-organs’.

® Alternatives: The necessary level of maturity and complexity depends
on the question being asked. For some high-throughput screens, a

simple and cheap cell line might be appropriate as a first choice (e.g.
the rodent cardiomyoblastic cell line H9C2). These cells have primar-
ity skeletal muscle characteristics and lack cardiac contractility. HL-1
cells, derived from a mouse atrial tumour, exhibit several cardiac-
specific phenotypes but proliferate possibly involving more genetic
alterations than the initial SV40 antigen expression.”>’ More recently,
rat atrial CMs were transduced with a doxycycline-dependent SV40
LT antigen that could be easily expanded and differentiated into excit-
able and contractile atrial CMs upon removal of doxycycline.”*® The
rodent background of these CM-like cells has, however, a consider-
able limitation. More recently, a similar approach was used for genera-
tion of a human atrial immortalized cell line.'®?

As indicated above, further fine-tuning of differentiating iPSC-derived
cell types and generation of multi-cellular models is ongoing. Promising
developments that may be able to reduce the use of animal models, in-
clude the generation of simple 3D microtissues or organoids containing
iPS-derived cardiac endothelial cells, fibroblasts and CMs,**’ most likely
applying matrix-like substances,”’ containing a vascular network,**° or
using printed scaffold materials to tailor microstructural mechanical de-
sign and mimic cardiac stiffness.?®’

4.3 Animal-free strategies to mimic valve
disease and vascular pathology

In recent years, animal-free strategies have been introduced to uncover
the pathophysiologic mechanisms underlying VD, atherosclerosis and
AAA.

For VD several studies focused on decrypting the cellular pro-calcific
phenotype by evolving 3D pathology modelling involving substrates with
defined chemical and mechanical characteristics using an integrated vi-
sion of ‘mechano-paracrine’ signalling controlling the physiological versus
the pathological phenotype of VICs. The stiffness sensitivity of VICs was
demonstrated, for example, in studies performed with hydrogels with
tuneable mechanical characteristics,%? as well as in the presence of para-
crine signalling by TGF-B.24* More recently, investigations have allowed
for the characterization of the molecular signalling underlying the activa-
tion of VICs towards the pro-fibrotic phenotype. In particular, for de-
scribing the relevance of the mechanically activated Hippo
transcriptional machinery®** for porcine®® and human®®® aortic VICs
pro-fibrotic activation. In aortic VICs, this pathway was more active close
to the calcified areas.”®’” Another option relies on complex fabrication
processes of valve microenvironments combining different ratios of ma-
trix components (e.g. glycosaminoglycans, GAG) with hydrogels (e.g.
Gelatin-Methacrylate) mimicking mechanical features of structural valve
components such as collagen.”®® In addition to mechanical valves and
valve prostheses made from fixed biological materials like porcine heart
valves or bovine pericardia, prostheses made from decellularized heart
valve matrices may become the gold standard as these display fundamen-

tal beneficial characteristics.2®’

With these approaches, it is more
feasible to investigate the complex response of valve cells to pathophysi-
ologic stimuli in the context of valve tissue-mimicking architecture and
essential biophysical characteristics (Figure 2).

AA for atherosclerosis, flow chambers coated with human atheroscle-
rotic plaque lysates are being applied to study the dynamics of platelet
and leucocyte plaque interactions under flow conditions. Tissue-engi-
neered vascular grafts, composed of polymers, and implanted in bioreac-
tors or animal models for vascular tissue regeneration, have been
successfully created.?’%*”" Chip-based microfluidics systems containing
3D structures with an arterial geometry build, containing iPSC-derived
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pericytes, vascular SMCs and endothelial cells, can be subjected to flow
and shear stress. These are useful for studying the effects of flow and
shear stress on endothelial cell biology, as well as arterial thrombo-
sis.>’>?73 These novel 3D tissue-engineered arteries can be considered a
prelude to the 3D in vitro generation of atherosclerotic plaques.
However, engineering an artery that contains the arterial geometry, is
subjected to flow conditions, contains a plaque in which all cells are rep-
resented, immune cells are recruited, and lipids are processed, is still not
possible and poses a future challenge.

AAA studies in aortic tissues or models developed with patient cells
from biobanks studying the SMC contractility and AA pathophysiology
(Section 4.1),>'7?7% as well as novel in vitro 3D models to study SMC-
ECM interactions are forthcoming. Advancements are made to integrate
mechanical components into these models to mimic shear stress, which
can activate infllmmatory pathways, atherosclerosis, intima hyperplasia,
and aneurysm formation.””>*”® The evolution of imaging-based models
of intravascular flow dynamics has revealed that pathological program-
ming of the vessel wall may also occur with the crucial contribution of
the wall stress.”® Recently, the concept of cell mechanosensation has
come to connect the transmission of mechanical forces to cells from the
ECM or vice-versa and to discrete gene regulation patterns affecting the
cellular homeostasis within the cardiovascular system.*”” This has con-
firmed the existence of novel mechano-dependent pathologic pathways.
For example, through an in vitro model of circumferential wall strain asso-
ciated with coronary flow dynamics occurring in arterialized saphenous
veins, involvement of Thrombospondin-1 (TSP-1) in pathological activa-
tion of resident myofibroblasts in the wall was revealed for the first time,
with consequences for neointima accumulation and vein graft failure.?”®
Since TSP-1 has a role in the formation of ascending aneurysm through a
mechanism involving changes in mechanical characteristics of the
vessel wall,>”? it could be a key factor connecting alterations in tissue bio-
physical features, modifications in cellular composition and signal
transduction.

Molecular modelling with ‘vasculature-on-a-chip’ devices mimicking
the architecture, mechanics and cell setup of arteries and veins has finally
become a novel way to investigate vascular pathology programming
(Figure 3).® These models have the advantage of being easily manufac-
tured with biocompatible materials, are miniaturized and reproduce the
haemodynamic patterns typical of pathologic vasculature. This is
expected to allow an unprecedented multiplex analysis power with cells
that can be directly derived from patient biopsies without involving ani-
mals, providing immediate translational and personalized therapeutic
perspectives.

4.4 Production and testing of heart valves
Given the limited number and sizes available from human donor mate-
rial, current research focuses on the development of non-immunogenic
xenogeneic heart valves matrices.”®' Developed in the sheep model,
orthotopically implanted acellular allogeneic pulmonary and aortic heart
valve matrices get repopulated with autologous interstitial cells, whereas
the lumen gets re-endothelialized by autologous endothelial cells.?®’
With this, the grafts are non-thrombogenic and regain the ability to adapt
to the growth of the recipient. Therefore, these animal-free based strate-
gies are easily translated into the clinical setting as they provide the possi-
bility to create new transplantable valves which are of utmost
importance, for instance, for paediatric patients.**?

The principle of the tissue engineered heart valve (TEHV) is based on
the construction of a biodegradable heart valve-figured scaffold that
develops into living valve-formed tissue by autologous cell invasion after
resolving the scaffold. The basic requirements of TEHVs are: biocompati-
bility, non-immunogenicity, non-thrombogenicity, capacity to mimic
function and structure of the heart valves, and adaptability to physiologi-
cal and pathophysiological conditions.>

The strategies of TEHV fabrications include molded or sutured scaf-
folds with using: natural or synthetic polymers, decellularization, electro-

spinning, 3D printing, in vivo bioengineering, and combination of these
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Figure 3 Aneurysm-on-a-chip manufactured with a 3D printing-based microfluidic channel patterned inside a polydimethylsiloxane (PDMS) block. The
heatmap represents the distribution of the flow velocity reproducing the hemodynamic conditions occurring into aneurysms. Figure 3 is original and contains

unpublished modelling and manufacturing images.

techniques (hybrid TEHVs).2®* The majority of the TEVHs are con-
structed by molding of polymeric substances into a valve-like shape, or
attaching to an appropriately formed stent.”® For the engineered tissue,
either natural biopolymers, such as collagen or fibrin or synthetic
polymers (e.g. polyglycolic acid, polylactic acid, polye-caprolactone,
poly4-hydroxybutyrate) are used. The stent-polymeric scaffolds are
then populated with different types of cells (e.g. marrow stromal or en-
dothelial cells, or mesenchymal stem cells) in bioreactors to avoid for-
eign body reaction. The second most frequently used TEHV fabrication
is the decellularization of animal heart valves by using detergents, immer-

sion, or perfusion approaches.”®® Currently, two TEHVs have been

approved for human use: the Cryolife’s SynerGraft® in Europe and the
USA, and AutoTissue GmbH’s Matrix P plus N™ in Europe.
Unfortunately, the safety and efficacy of these products are currently

rather insufficient, controversial results in clinical

287,288

showing
applications.

Electrospinning is less frequently used due to its complexity. This
technique is based on creating a solid controlled fibre structure of
TEHV. The construction of which fits better to the anisotropic mechani-
cal characteristics of the natural valve, simulating the microarchitecture
of the valve better than the other technologies.”®” To enable a 3D
Bioprinting of a TEHV, a 3D imaging (computed tomography or magnetic
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resonance) is first applied, and converted to a stereolithography com-
puted file of the 3D printer, followed by bioprinting of the TEHVs (inkjet,
extrusion or laser-assisted) by using bioinks of cell-free or cell-
encapsulated biomaterial**° The hybrid technique to construct TEHV
combines decellularization, and cell seeding technologies, as well as tubu-
lar fibrin gels, encapsulating cells followed by decellularization or the
electrospinning method recombining with gelatin hydrogels, or others.
The in vivo tissue engineering of a valve requires its implantation in an ani-
mal species chosen for the experiment (in vivo ‘bioreactor or cell cul-
ture’), and cellularization in vivo, followed by orthotopic implamtation.291
Each TEHV construction technology has its advantages and disadvanta-
geous, and a great deal more scientific and technological development is
needed for human translation of the TEHVs.

4.5 High-throughput screenings

Over the last decade, there has been an explosion of studies based on
HTSs of both small molecules and small nucleic acids in cultured CMs
for drug and gene discovery. This was rendered possible by the develop-
ment of biological assays amenable to miniaturization and automation,
and by the availability of technologies for processive high content (HC)
microscopy imaging, determination of mechanical forces, and electro-
physiology measurements. The use of cultured cell lines of cardiac deri-
vation, primary fibroblasts or neonatal CMs or human embryonic stem
cell (hESC)/hiPSC-derived CMs has been instrumental in the possibility
of identifying active compounds through large library screenings.

A number of cellular, molecular, and functional assays can be adapted
to 96- or 384-well plates and thus rendered amenable to HTS analyses.
To search for small molecules or nucleic acids regulating these processes
at the cellular level in primary CMs or CMs derived from hESC/hiPSC
lines the following has been implemented: the incorporation of thymi-

292-294

dine analogue to measure CM proliferation, assessment of CM

) 295-297
cross-sectional area,

tion,>”® protection from cardiotoxic treatments,

inhibition of pathologic aggregate forma-
299301 o1 regulation of
Ca*" handling3%* The development of HTS assays aimed at assessing
two fundamental parameters of CM function, namely electrical activity
and contraction force, is definitely more demanding in terms of instru-
mentation and complicated by the immature nature of hESC/hiPSC-
CMs. Electrophysiology assays, such as patch clamping recording, are
too low throughput for HTS, although automated patch clamp technol-
ogy is advancing. Nevertheless, this limitation can be overcome by using
optical recording of fluorescent sensor probes of transmembrane volt-
age, current transients using dedicated devices or by HC micros-
copy.333% Mechanical force exerted by CMs can be measured, in an
HTS format, by culturing cells on thin films of materials that can be bent
by systolic contraction,>® or by measuring contraction and relaxation of
substrates embedded with fluorescent microspheres.3% In addition to
studies in CMs, a recent HTS in primary human cardiac fibroblasts
identified drug candidates to target cardiac fibrosis and diastolic
dysfunction.>””

As indicated in Section 4.2, a major limitation remains the embryonic
nature of hESC/hiPSC-CMs. As some embryonic characteristics can ma-
ture in vitro CM maturation itself can become the read-out of specific
HTS with small molecules or microRNAs. In addition to the cell studies
which replace animal studies, recent advances in HTS measurements in
enzymatically isolated intact single CMs from rodent hearts reduce the
number of animals required for high-throughput testing of compounds
and stressors.*%33%

Finally, the possibility of growing CMs, either alone or in various com-
binations with cardiac fibroblasts or other cells offers the opportunity of

conducting screenings in conditions of load and CM maturation closer to
those of the heart in vivo.>"°

5. The power of data

5.1 Registration of preclinical trials: data
repository for animal research

Preclinical research is pivotal to understand basic mechanisms of diseases
and to provide information about the safety and efficacy of new strate-
gies. The ultimate final goal is to make advances in medical science and to
improve patient healthcare. Currently, only a relatively small number of
the products from translational research finds application in the clinical
setting."" One of the main issues with preclinical studies is publication
bias. Positive and/or significant results are more likely to be published
than negative study results. This leads to an overestimation of the effects
of therapies and unjustified transition of interventions to clinical trials.
Moreover, the lack of sharing both negative and positive results contrib-
utes to the repetition of research, and failure to comply with the 3R
principles.

The development and use of an animal registry and/or preclinical net-
work represent a possible solution for minimizing publication bias. To
this end, two platforms (www.preclinicaltrials.eu®'? and www.animalstu
dyregistry.org>"®) were recently launched for preregistration of animal
studies to increase transparency and reproducibility of bioscience re-
search and to promote animal welfare. The registration form helps scien-
tists plan their study thoroughly by asking detailed questions concerning
study design, methods, and statistics. Although most researchers are in
favour of more transparency, major disadvantages of preregistration ex-
ist, especially intellectual property (IP) issues and administrative burden.
At present, these are the most likely reasons why there are only a limited
number of preregistered studies. Several solutions are currently being in-
corporated to circumvent these obstacles. One example is when regis-
tering a study, it automatically receives a digital object identifier (DOI)
that marks it as the original research idea of the investigator. In addition
to this, the users can decide to restrict the visibility of their registered
studies for up to 5 years. The Consortium for Preclinical Assessment of
Cardioprotective Therapies (CAESAR)®*™ and Mouse Phenome
Database (https://phenome.jax.org/) are examples of networks in which
experienced laboratories work together and share data on rodent mod-
els. The implementation of an independent and prospective animal regis-
try and preclinical network can, therefore, support the researcher in
enhancing the quality of the study, as it requires addressing blinding, ran-
domization, sample size calculation, and power. Furthermore, they will
lead to standardized protocols, and a reduction of unnecessarily re-
peated studies, animal use, and costs. A data repository for animal re-
search could be exploited for advanced analysis through artificial
intelligence and data mining, which could help to establish rules or for-
mulas for predicting adverse and/or therapeutic responses.

5.2 Patient registries, biobanking, -omics
studies and imaging

Further acceleration of clinical cardiovascular research will only be possi-
ble if networks are created across institutes and countries to facilitate
collaborative data science. In particular, the implementation of (trans)na-
tional networks across institutes using similar data models and harmo-
nized clinical care pathways will facilitate patient recruitment in targeted
clinical trials and enable genotype—phenotype association studies with

220z Asenuer ¢z uo 1sanb Aq 8926619/0.EGBAD/IAI/SE0 L "0 /IOP/a|0IIB-80UBADPE/SSIOSBAOIPIED/WO02 dNO"dIWapeoe//:sdiy Wol) PapEojuMO(]


http://www.preclinicaltrials.eu
http://www.animalstudyregistry.org
http://www.animalstudyregistry.org
https://phenome.jax.org/

24

J. van der Velden et al.

appropriate statistical power, for example, in cardiomyopathy patient
groups. Furthermore, it would provide a framework for a learning
healthcare system through benchmarking, cross-validation of novel strat-
egies and artificial intelligence algorithms in both research and routine
care. Unsupervised learning allows for the clustering, structuring and
compressing of the information content for a high-dimensional dataset
of important features or main components. Common methods
are principal component analysis, spectral clustering®*> or deep autoen-
coders>"¢3"® A well-known extension to autoencoders are variational
autoencoders that allow efficient inference and learning in directed prob-
abilistic models.>"” Autoencoders are neural networks used to learn an
efficient representation in an unsupervised manner. They contain a
bottle-neck layer that then generates the latent space of compressed
variables. Understanding the underlying data distribution and the effect
of involved parameters with such a deep autoencoder, generates predic-
tive models®® and simulates the effect of different parameters, such as
drug responses.®*'

Great steps in creating collaborative networks for human data ex-
change have been made through the creation of large biobanks, for
example the, UK Biobank (https://www.ukbiobank.ac.uk/about-biobank-
uk/) and Generation Scotland project (https://www.ed.ac.uk/generation-
scotland). Both are resources of demographic, clinical information,
biological samples and in some cases imaging data from thousands of vol-
unteers from the South of England and Scotland, respectively. Both bio-
banks have established multi-disciplinary skills networks in health
informatics, epidemiology, genetics, health economics, and focused data
analyses from cross-sectional whole-body imaging and specific cardiac
imaging. Significant ethical, legal and social issues need to be addressed to
allow such complex biobanks to operate safely. The fundamental aim of
such large biorepository resources is to improve the prevention, diagno-
sis, and treatment of a wide range of serious and life-threatening illnesses.
Scotland in particular has a unique electronic health record system with
data linkage dating back to its creation in 1986, the information available
from the Biobankscan be data-linked with clinical outcomes and long-
term follow-up, as well as genetic analysis of its participants. Whilst these
Biobanks have only recently been established in the past decade, there
are much older and implicitly extremely valuable long-term follow-up
registries. For example, the Aberdeen Children of the 1950’s, which
comprises 12150 participants born between 1950 and 1956 who were
subsequently deeply phenotyped every decade with state-of-the-art
investigations contemporaneously available at each such time point.

An example of utilizing the maximal potential of data obtained within
the different disciplines is Network Medicine. It originated from the fact
that conventional scientific reductionism is inadequate for understanding
complex diseases and developing precise therapies. Moreover, it views
health and disease as an interplay among molecular and environmental
determinants that must be fully considered in precision medicine.
Network Medicine, therefore, uses big data to create an integrated set
of principles and discoveries that can fully capture these inherent depen-
dencies. Focusing on the interaction of biological components, such as
proteins, mRNAs, microRNAs, or metabolites, allows us to understand
molecular pathways that underlie the pathogenesis of diseases. In addi-
tion, Network Medicine has expanded to integrate molecular data with
phenotypic features to clarify mechanisms driving clinical disorders.?
The strategy used in Network Medicine to address a clinical question
(i.e. absence of a priori hypotheses on the molecular mechanisms causing
diseases or a priori molecular target selection) and the technologies
used in network analysis are, by definition, unbiased, and do not affect
how networks are defined in different data sets or network layers.

Therefore, the network medicine approach can lead to a significant re-
duction of the number of animal experiments designed in the classical re-
ductionist way. As a simple example, the miRNA expression fingerprint
of the hypercholesterolaemic myocardium, allows to build the miRNA—
mMRNA target networks and predict key molecular targets in an unbiased
way, thus remarkably reducing the necessary in vivo experiments for vali-
dation of predicted targe‘cs.3 z

The cardiovascular community should provide guidelines to establish
a framework according to FAIR principles to: enhance findability using
metadata catalogues of patients with clinical, genetic, imaging and -omics
data; create transparency about accessibility protocols of existing data
sources for external researchers and other third parties; stimulate inter-
operability across institutes to enable collaborative science and feder-
ated learning and promote reuse of data in spirit of open science and
improve durability of financial and non-financial public investment.>%*
Instead of manual curation of clinical care data, the cardiovascular com-
munity should aim to standardize clinical care pathways and harmonize
phenotypes and outcomes within electronic health records to minimize
the burden of data collection, and access the wealth of data available
within our hospital systems including clinical notes, imaging and -omics
data. To facilitate collaborative analyses a common data model should
be adopted, like the one developed by the Observational Health Data
Sciences and Informatics programme (https://ohdsi.org). A common data
model will also enable distributed learning. Currently, collaboration
across institutes is limited by privacy and security concerns of data shar-
ing. However, with the development of federated learning, these restric-
tions could be resolved.>* Instead of sharing data within a huge central
data storage (data-to-code), the algorithms will be distributed across
centres (code-to-data) without any actual data sharing. The created sta-
tistical models and its parameters can subsequently be validated across
different clinical settings, patient characteristics (e.g. age, sex and ethnic-
ity), and countries to ensure that those algorithms are generalizable or
calibrated to the individual patient in front of us. The importance of such
an infrastructure is clearly illustrated by the COVID-19 pandemic.
Already existing networks such as REMAP-CAP (Randomized,
Embedded, Multifactorial Adaptive Platform Trial for Community-
Acquired Pneumonia, www.remapcap.org) and newly founded networks
like CAPACITY-COVID (www.capacity-covid.eu) initiated by the cross-
institutional Dutch CardioVascular Alliance (www.dcvalliance.nl) have
accelerated clinical research to inform patients and caregivers about risk
assessment and potential therapies for COVID-19 in a relatively short
period. Further development and expansion of networks across coun-
tries are needed to collect real-time clinical information to perform
point of care pragmatic trials across different groups of patients and
healthcare systems.

Lastly, the cardiovascular scientific committee should not forget to in-
volve the main group of interest, the patients.

Quote from a patient: ‘I have given permission to take
blood and tissue for scientific research but | have
never heard again about the results or outcome of
the research’.

Too often, scientists forget to correspond about the results obtained
with patient’s data/tissues once a publication is accepted. Participation of
patients and their family members is key for successful translational re-
search, in particular in chronic cardiovascular diseases, where follow-up
studies in patients and their families are central for improving our knowl-
edge of disease pathomechanisms and effectiveness of treatments. The
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fact that the questions of cardiovascular biomedical research are scientif-
ically relevant does not necessarily mean that they are relevant from the
patient’s perspective. Most research questions are posed from a medical
or regulatory perspective and are often based on a laboratory point of
view and is focused on basic science that is often removed from the true
needs of patients,326 Patient participation in research is thus crucial for
identifying patient-relevant questions and outcomes.

5.3 Computational modelling of
cardiovascular function
Over the last two decades, there has been rapid development in cardio-
vascular research methodologies (e.g. advanced methods for quantifica-
tion of cellular function, better understanding of intercellular
communication, new methods for genetic targeting of selected pathways
and advanced high-resolution medical imaging), which has increased the
quality and quantity of available data on the complex and dynamic func-
tion of the cardiovascular system. The availability and the level of details
of data have enabled the development of thoroughly validated computa-
tional models of heart and vessels.**?8 These models capture the com-
plex non-linear dynamics of the cardiovascular system across different
scales, from genetic mutations to subcellular protein function and cellu-
lar electrophysiology, to tissue-scale myocardial and vascular mechanics,
to organ-scale cardiac pump function and system-scale blood flow dy-
namics. Computational models provide a unique alternative research
platform for integration of experimental data and for performing in silico
experiments to better understand cardiovascular physiology and patho-
physiology, support clinical decision making and improve safety and effi-
cacy of drug and biomedical device therapies.>*®

The application of computational models for both fundamental, pre-
clinical and clinical research in biomedicine is rapidly increasing®*’ and
this has led to many examples showing that in silico experiments can lead
to refinement, reduction, and in some cases even replacement of animal
experiments. For example, research has demonstrated that computa-
tional models of cellular cardiac electrophysiology can predict adverse
drug effects (e.g. life-threatening arrhythmias) with higher accuracy than

animal models**°

showing that human computational models can help to
reduce the use of animal experiments in early stages of drug testing. This
research is part of the Comprehensive in vitro Proarrhythmia Assay initia-
tive (https://cipaproject.org/about-cipa/) that aims to integrate predic-
tions by in vitro, in silico and hiPSC-CM models with clinical evaluation for
drug safety testing and is promoted by regulatory bodies.

In fundamental cardiovascular research, in silico cardiovascular models
have mainly been used to translate changes in cellular physiology ob-
served in vitro or in animal models to cellular changes in human cells and
whole-organ human clinical phenotypes. For example, in the context of
cardiac myocyte Ca>" handling, where in vivo measurements are not
available, simulation studies have shown how in silico models can be used
to extrapolate changes observed in vitro or in animal models into an
in vivo human context.>"

In a more clinical setting, multi-scale computational models of heart
and vessels are being personalized using the rapidly growing wealth of
patient-specific diagnostic data available in the clinic. The resulting virtual
representation of the individual patient, also referred to as ‘Digital
Twin’,** can be used to gain better insights into the patient’s cardiovas-
cular pathology, underlying symptoms and to predict the individual’s re-
sponse to therapy. Studies have demonstrated successful applications of
personalized computational models, including prediction of arrhythmia

risk in post-Ml patients,333 non-invasive measurement of fractional flow
reserve from computed tomographic images of patients with coronary
artery disease,®** and non-invasive electrocardiographic imaging.335

In conclusion, computational modelling and simulation, sometimes
called the third paradigm of science, already established a prominent
role in the quest to refine and reduce the use of animal experiments for
cardiovascular research. However, computational modelling is not likely
to fully replace animal experiments in the foreseeable future. Animal
models continue to provide novel insights into pathophysiological pro-
cesses which have not yet been implemented in computational models.
Moreover, animal experimental data are required for validation of com-
putational models when human data are unavailable. What all aforemen-
tioned successful applications of computational models have in common
is that they are the result of decades of basic research and multidiscipli-
nary collaborations between researchers, computer scientists, and
clinicians.

6. Moving from bench to clinic

Our paper highlights the evolution in the design of cardiovascular disease
models that has taken place in a relatively brief time-span. Multiple
animal-free models and tools to increase power of studies became avail-
able, and animal models have been refined in the past ~20years.
Translation of basic and clinical research to actual implementation in the
clinic represents a major challence, and warrants a careful experimental
design making use of available complimentary research models ranging
from in vitro experiments in cells and iPSC-derived models to studies in
rodents, large animals and patients. Recent examples, described below,
illustrate the potential of such an approach to move from bench to clinic.

6.1 Peripartum cardiomyopathy

PPCM is a potentially life-threatening heart disease that emerges with
acute or with slow progression of LV systolic dysfunction (LVEF <45%)
late in pregnancy, during delivery, or in the first postpartum months, in
women with no other known causes of HF.23 Risk factor profiles (i.e.
higher risk for PPCM in women with African ancestry) for women with
pregnancy-associated hypertensive complications, such as older women
or women with twin pregnancies, suggests that PPCM consists of multi-
ple pathomechanisms pointing to a syndrome and not a single defined
disease.****¥ This notion is further supported by the prevalence of
cardiomyopathy-causing mutations in about 15% of patients®3®33”
Experimental data confirm that different factors can induce and drive
PPCM, including infllmmation and immunity, pregnancy hormone im-
pairment, catecholamine stress, defective cAMP-protein kinase A, and
G-protein-coupled-receptor signalling genetic variants®>® and aberrant
cardiac metabolism. Under physiological circumstances, maternal lipid
metabolism is increased during the last trimester of pregnancy and nor-
malizes after delivery. Recently, it has been shown that lipid metabolism
is widely affected in hiPSC from patients with PPCM, findings that were
replicated in a PPCM mouse model.>*° Evidence is accumulating that sev-
eral of these mechanisms may merge into a common major pathway,
which includes unbalanced oxidative stress and the cleavage of the nurs-
ing hormone prolactin (PRL) into an angiostatic, pro-apoptotic and pro-
inflammatory 16 kDa-PRL fragment, resulting in subsequent vascular
damage and HF.>* Based on this common pathway, potential disease-
specific biomarkers and therapies have emerged that are currently tested
in a bench to bedside approach. One therapy concept has been
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developed in mice where HF medication is combined with the PRL
blocker bromocriptine and had already been introduced into 2018
European Society of Cardiology (ESC) Guidelines for the management

of cardiovascular diseases during pregnancy.341

6.2 microRNAs - route to the clinic

Based on initial miIRNA library screens miR-132 was identified as driver
of pathological growth of CMs in vitro and next in vivo (Figure 10).3* Ina
number of mouse studies it was shown that oligonucleotide-based inhibi-

ton of miR-132 halted and reverted pathological cardiac remodelling.**?

343 and a

Following this, the therapeutic efficacy was tested in an acute
chronic®** model of Ml in pigs. These activities were recently translated
to chronic HF patients where the miR-132 inhibitor drug showed a good
safety profile and indicative therapeutic efficacy based on improvement
of several parameters, such as reduction of N-terminal pro-B-type natri-
uretic peptide, paving the way for further clinical development of this

new generation of HF medication.>**

7. Conclusion and future challenges

Globally, there is a mounting belief that biomedical sciences can prog-
ress without animal research by replacing in vivo experiments with
tests performed in human-derived in vitro models. While this is in part
justified as multiple research questions can be answered without the
use of animals, the use of animal pathological modelling is still neces-
sary for several applications such as, implantation of medical devices
(e.g. stents, new catheter-guided endoscopy systems, implant devices),
in vivo drug testing, and for identifying mechanisms underlying cardio-
vascular disease as outlined in the current paper. Stem cell-based hu-
man pathology models have the potential to become key in testing
toxicity and effectiveness of new drugs at a cellular or organ-like lev-
els, but lack the complexity present in multiple forms of cardiovascu-
lar disease. As cardiovascular disease is a complex, multifactorial
disorder, and the current knowledge is limited, we will have to con-
tinue to rely on laboratory animals, enabling thorough studies in a
well-controlled in vivo setting.

In coming years, animal models will be further refined and made more
‘human-like” on the basis of big data sets obtained in human studies. As
pathomechanisms and treatment response differ between male and fe-
male cardiovascular patients, the effect of sex should be taken into ac-
count in the design of animal studies. Novel 2D and 3D in vitro
technologies, and advanced computational analyses will certainly result
in a more refined experimental design reducing the number of labora-
tory animals currently required to perform studies and test drugs. A ma-
jor challenge in the refinement of iPSC-derived models is their validation,
i.e. do models capture human pathophysiology? The iPSC-derived mod-
els may ultimately be used for precision medicine, however, currently, a
gap exists between iPSC-derived heart models and the clinical pheno-
type of patients, as human cardiac muscle systems have not been vali-
dated (i.e. not compared to individual patient characteristics and human
cardiac tissue samples). This limits their applicability for studies on patho-
mechanisms and use in the clinical setting. In addition, mimicking sex dif-
ferences in stem cell-derived heart models is a largely unexplored area
and warrants further research and development. Successful translation
of cardiovascular research warrants integration of results obtained in ani-
mals, animal-free models and patients.
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